

CURSO DE POSGRADO ACADÉMICO

Fabricación, caracterización y aplicaciones de films delgados

COORDINADOR

Prof. Dr. Matías R. Tejerina

DOCENTE A CARGO DEL DICTADO

Dr. Diego Richard

DOCENTES

Prof. Lic. Susana Conconi Prof. Dra. Laura Damonte Prof. Dr. Juan F. Martiarena Prof. Dr. Fernando Alvira Prof. Dr. Rodrigo Parra Prof. Dr. Gustavo Torchia

DURACIÓN

30 horas

Más Información

OBJETIVOS

El objetivo general del presente curso es dar una formación de posgrado en la investigación sobre films semiconductores y dieléctricos de óxidos metálicos.

Durante el curso se analizarán técnicas típicas de fabricación y caracterización, posteriormente las aplicaciones de estos materiales y los recientes avances científico-tecnológicos en este campo del conocimiento.

CONDICIONES DE INGRESO

Poseer título de Ingeniería, física, química o carreras afines, o estar en el último año de alguna de las carreras.

LUGAR

Edificio Central, Facultad de Ingeniería.

MODALIDAD

Presencial.

CONTENIDO

La currícula del curso posee cuatro módulos principales. Un primer módulo que aborda los principios teóricos físico-químicos sobre los que se basa la fabricación de los films basados en la técnica química "sol-gel". Se estudiará los procesos químicos involucrados y la física de semiconductores. En el segundo módulo se abordarán las variables físicas que predominan en distintas técnicas de fabricación de films: "sol-gel dip-coating", "sol-gel spin-coating", "sol-gel spray-coating" y "sol-gel pulsed laser deposition". También se hará hincapié en las distintas estrategias posibles para el diseño y la fabricación de films. En el tercer módulo se estudiarán las técnicas de caracterización típicas de los films que permiten estudiar sus propiedades físico-químicas. Se introducirá la espectroscopia de transmitancia y reflectancia en el rango UV-Visible-NIR (UV-VIS), microscopia electrónica de barrido (SEM) y espectro de energía de rayos X retrodispersada (EDS), microscopia de fuerza atómica (AFM), difracción de rayos X(XRD), medida de resistividad eléctrica y fotoluminiscencia. En el cuarto módulo se estipula estudiar las distintas.

CERTIFICACIÓN

De Aprobación:

Asistencia superior al 85%, elaboración de un informe y aprobación de evaluación escrita.

POSGRADO de INGENIERÍA

Tel: (+54) (221) **425-8911** / Interno **3009** Calle 1 y 47, La Plata Buenos Aires, Argentina

CURSO DE POSGRADO ACADÉMICO

Fabricación, caracterización y aplicaciones de films delgados

DOCENTE A CARGO DEL DICTADO

Dr. Diego Richard

Investigador Adjunto en el Centro de Tecnología de Recursos Minerales y Cerámica (CETMIC, UNLP-CICPBA-CONICET).

Jefe de Trabajos Prácticos en el Departamento de Física, Facultad de Ciencias Exactas, UNLP.

Licenciado en Física, UNLP, Doctor en Física, UNLP.

Docente-Investigador (SPU) en Categoría IV en el Departamento de Física, Facultad de Ciencias Exactas, UNLP.

GO

MÓDULO I:

CONTENIDO

- 1.1. Introducción a los films y sus aplicaciones
- Fundamentos químicos de las técnicas denominadas "sol-gel"
 - 1.2.1. Tipos de precursores y su reactividad en solución
 - 1.2.2. El modelo de la carga formal
 - 1.2.3. Sales de iones metálicos en solución: hidrólisis, condensación, formación de fases sólidas
 - 1.2.4. Alcóxidos en solución: Estructura, hidrólisis, condensación
 - 1.2.5. Precursores mixtos
 - 1.2.6. Sinterización
- 1.3. Física de semiconductores
 - 1.3.1. Características generales de los materiales semiconductores
 - 1.3.2. Configuración electrónica y red cristalina
 - 1.3.3 Generación y recombinación
 - 1.3.4. Dopado de semicondutores
 - 1.3.5. Estructura de bandas
 - 1.3.6. Semiconductores tipo p y tipo n
 - 1.3.7 Conductividad y movilidad eléctrica

MÓDULO II:

Métodos de fabricación de los films

- 2.1. Sustrato
 - 2.1.1. Tipos de sustratos
 - 2.1.2. Preparación de sustrato
- 2.2. Solución
 - 2.2.1. Mojabilidad de sustrato
- 2.3. Técnicas sol-gel:
 - 2.3.1. Dip-coating
 - 2.3.1.1. Velocidad de extracción
 - 2.3.1.2. Viscosidad
 - 2.3.2. Spin-coating
 - 2.3.2.1. Velocidad de rotación
 - 2.3.2.2. Viscosidad de solución
 - 2.3.3. Sol-gel spray pyrolysis
 - 2.3.3.1. Distancia de aplicación
 - 2.3.3.2. Temperatura de sustrato
- 2.4. Pulsed laser deposition
 - 2.4.1. Muestra objetivo
 - 2.4.2. Láser pulsado
 - 2.4.2. Distancia de aplicación
 - 2.5.1. Propiedades de transporte en las técnicas sol-gel

POSGRADO de INGENIERÍA

Tel: (+54) (221) **425-8911** / Interno **3009** Calle 1 y 47, La Plata Buenos Aires, Argentina

MÓDULO III:

Caracterización de los films

- 3.1. Espectro de transmitancia y UV-VIS-NIR Características de la transmitancia Metodo de la envolvente Determinación de espesor, índice de refracción, absorción, bandgap
- 3.2. Espectro de reflectancia UV-VIS Metodo de la envolvente Determinación de espesor, índice de refracción, absorción, bandgap
- 3.3. Microscopia SEM
 Estudio de morfología
 Determinación de espesores
- 3.4. Microscopía AFM
 Estudio de rugosidad
 Determinación de espesor
- 3.5 Difracción de Rayos X
 Identificación de fases cristalinas
 Determinación de tamaño de cristalita
 Textura u orientación cristalina
 Deformación residual de red cristalina
- 3.6 Medidas de resistividad eléctrica de cuatro puntas Fundamentos y aplicación

MODULO IV:

Aplicaciones de los films y recientes avances

- 4.1. Sensores de gases tóxicos
- 4.2. Electrodos para capacitores
- 4.3. Vidrios conductores
- 4.4. Recubrimientos anti-microbianos
- 4.5. Films Fotocatalizadores
- 4.6. Films de remediación ambiental
- 4.7. Celdas solares

Más Información

