

CURSO DE POSGRADO PROFESIONAL

Hidráulica aplicada

DOCENTES
RESPONSABLES
Dra. Paula Consoli
Lizzi
Dr. Eduardo Kruse

DOCENTES
COLABORADORES
Dra. Patricia
Laurencena
Ing. Mauricio Angulo
Ing. Arturo Rivetti

CARGA HORARIA

30 horas

DÍAS Y HORARIOS

Lunes y miércoles 15 a 18 horas

OBJETIVOS

El objetivo de este curso es adquirir los conceptos básicos de la hidráulica de los escurrimientos a superficie libre, a presión y en medios porosos, aplicada a las instalaciones de las obras de captación, impulsión, conducción y tratamiento del agua y los efluentes.

Se presentarán las nociones básicas del funcionamiento de las bombas hidráulicas utilizadas mayormente en las instalaciones de agua potable y efluentes líquidos, su disposición, diferentes diseños y tipologías de instalación en estaciones de bombeo.

Se presentarán también las nociones básicas de hidrogeología para conocer los estudios necesarios a fin de caracterizar los distintos tipos de acuíferos y las tecnologías de extracción de aqua subterránea.

CONDICIONES DE INGRESO

Poseer título de grado de carreras relacionadas a Ingeniería, Ciencias Exactas o Ciencias Naturales. A solicitud de los interesados, se analizarán casos particulares sin título en estas áreas y antecedentes suficientes en temáticas afines a los temas del curso, para lo cual deberán adjuntar CV.

MODALIDAD

Virtual

Clases virtuales sincrónicas.

CERTIFICACIÓN

De Aprobación:

Calificación mayor o igual a 6 (sobre 10) más asistencia mínima del 80%.

De Asistencia:

Asistencia mínima del 80%.

Más Información

Tel: (+54) (221) **425-8911** / Interno **3009** Calle 1 y 47, La Plata Buenos Aires, Argentina

CURSO DE POSGRADO PROFESIONAL

Hidráulica aplicada

DOCENTES RESPONSABLES Dra. Paula Consoli

Dr. Eduardo Kruse

DOCENTES COLABORADORES Dra. Patricia Laurencena Ing. Mauricio Angulo Ing. Arturo Rivetti

CONTENIDO

Magnitudes principales en los escurrimientos a superficie libre y a presión: velocidad, caudal, presión, potencia, energía, energía específica, densidad, viscosidad. Unidades.

Instrumental y técnicas de medición tradicionales y modernas.

Escurrimiento laminar. Escurrimiento turbulento: Diagrama universal, Ecuación de Darcy Weisbach.

Escurrimiento permanente e impermanente (o transitorios) Ecuación de continuidad y ecuación de energía. Ec. de Beronulli.

Ejemplos de aplicación sencillos de conducciones a superficie libre y a presión relacionados con la ingeniería sanitaria.

Instrumental. Experiencias de medición.

Tipos de bombas según su uso. Curvas características (H - Q y Q - P y Rendimiento - Q) Curva característica del sistema.

Definición de punto de funcionamiento.

Similitud. Cavitación. Ensayos de rendimiento y cavitación.
Instrumentación.

Selección de bombas. Instalaciones de bombeo. Disposición de bombas en serie y paralelo. Ejemplos.

Estudios hidrogeológicos: Cuencas subterráneas. Propiedades hidrofísicas de las rocas. Balance hidrológico regional.

Escurrimiento en medios porosos: Zona saturada. Ley de Darcy.Tipos de acuíferos. Circuito geohidrológico Recarga – Circulación – Descarga. Mapas equipotenciales.

Captación de aguas subterráneas. Diferentes tipos. Naturales y artificiales.

Hidráulica de pozos. Métodos de equilibrio y de No-equilibrio.

Ensayos de Bombeo: distintos tipos, condiciones prácticas para su realización. Determinación de parámetros hidráulicos:

Permeabilidad. Transmisividad. Almacenamiento. Concepto de límites: cálculo por el método de las imágenes. Ejemplos.

Cierre y evaluación.

Más Información

Tel: (+54) (221) **425-8911** / Interno **3009** Calle 1 y 47, La Plata Buenos Aires, Argentina

